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Introduction

The bootstrap is an intuiধve and powerful technique to quanধfy the uncertainty in treatment

effect esধmates. Its applicaধon, however, can be prohibiধvely demanding computaধonally in set-

ধngs involving large datasets. In the past years, large datasets have become increasingly prevalent

in medicine and epidemiology. For instance, during the COVID-19 pandemic, the effecধveness

of mRNA COVID-19 vaccines was evaluated in datasets with more than 1 million subjects [1]. Al-

ternaধves to the standard bootstraps have been proposed. For instance, [5], introduced the Bag

of Liħle Bootstraps (BLB), a robust and efficient way of quanধfying the uncertainty in an esধmate

while having computaধonally superiority on large datasets. In this talk, we discuss the imple-

mentaধon of weighted-BLB, a modified version of the BLB aimed at quanধfying the uncertainty

of treatment effects esধmates in large datasets. We evaluate the performance of the proposed

technique in terms of bias, standard errors coverage of the true 95% confidence interval, and

computaধonal ধme in a simulaধon study. We apply the proposed technique in the evaluaধon of

treatment effects in a large observaধonal study containing more than 100.000 subjects. In the

past few decades, various esধmators of treatment effects have been proposed in addiধon to the

standard, inverse probability weighধng, and regression, such as, for instance, opধmal weighধng

based on kernel methods [3]. The proposed methodology provides a unified way to quanধfy the

uncertainty in treatment effect esধmates regardless of the esধmator used.

Full sample bootstrap algorithms

The parধধon method we propose does not use any explicit model for the outcomes. We can,

however, include an outcomemodel to impute potenধal outcomes and directly simulate the treat-

ment randomizaধon distribuধon

Tradiধonal

The standard approach is, for each bootstrap sample, we re-balance the data by re-compuধng

weights and esধmaধng the ATE [6] .

Weighted

We can also use weighted bootstrap approaches that do not require re-balancing each bootstrap

resample.

CDF (full)

1 Construct IPW weights w(Xi) in the full sample and construct weighted empirical cdfs for the
potenধal outcomes, F̂1(y1) =

∑n
i=1 Wiw(Xi)1(Yi≤y1)∑

i=1 Wiw(Xi)
and F̂0(y0) =

∑n
i=1(1−Wi)w(Xi)1(Yi≤y0)∑

i=1(1−Wi)w(Xi)
3 Impute on potenধal outcomes in this sample using the isotone coupling [2]:

Ỹi(0) =

{
Yi if Wi = 0
F̂0(F̂−1

1 (Yi)) otherwise
(1)

Ỹi(1) =

{
Yi if Wi = 1
F̂1(F̂−1

0 (Yi)) otherwise
(2)

(3)

3 Parধধon the data and for each subset, for each bootstrap construct a new treatment

assignment vector W∗ and calculate the mean difference using the Ỹ s.

Linear model (full)

Rather than empirical cdfs, we can also use an outcome model for the Y s to impute. We impute

the Y s using the correct linear model.

Partition bootstrap algorithms

Parধধon

for l← 1 to s do

Calculate n1 =
∑

i=1 Wi and n0 = n− n1
Sample a set of indices Il = {i1, . . . , ib} from I without replacement
Set I = I/ ∩i

j=1 Ij

For the data Yl = (Yi1, . . . , Yib), construct a model of the propensity score π̂(Xi)
Construct normalized inverse propensity weights for the subset data (ŵ0(Xi), ŵ1(Xi)) =(

1/(1−π̂(Xi))∑b
i=1(1−Wi)/(1−π̂(Xi))

,
1/π̂(Xi)∑b

i=1 Wi/π̂(Xi)

)
for k ← 1 to r do

Let b
(k)
1 =

∑b
j=1 Wij and b

(k)
0 = b− b

(k)
1

Sample

(
M

1,k
1 , . . . , M

1,k

b
(k)
1

)
∼ Multinomial(n1, ŵ1)

Sample

(
M

0,k
1 , . . . , M

0,k

b
(k)
0

)
∼ Multinomial(n0, ŵ0)

Calculate τ̂
(j)∗
k = 1

n1

∑b
i=1 WiYiM

1,k
i − 1

n0

∑b
i=1(1−Wi)YiM

0,(k)
i

end for

τ̂ (l)← 1
r

∑r
i=1 τ̂

(l)
i

end for

τ̂ ← 1
s

∑s
i=1 τ̂ (i)∗

This algorithm first parধধons the full dataset into s disধnct subsets, esধmates a propensity score
model within each subset, resamples within each subset using the (normalized) IPWs as weights

and esধmates an ATE for each resample, then summarizes the resample esধmates with a chosen

staধsধc and averages those staধsধcs across parধধons to obtain an overall bootstrap esধmate.

Addiধonal parধধon

We also apply the parধধon to the linear model and weighted empirical cdfs methods described

previously. The difference is that imputaধon is done within each subset.

Consistency of esধmator τ̂
(j)∗
k

p→ τ̂ATE

For the qth bootstrap draw, we construct the difference in mean esধmator:

τ̂
(j)∗
q = 1

n1

b∑
i=1

WiYiM
1,q
i − 1

n0

b∑
i=1

(1−Wi)YiM
0,q
i

Consider a single term of the above summaধon. By the weak law of large numbers, over r
weighted bootstrap resamples (corresponding to r treatment and control mulধnomial draws), for
each i

1
r

r∑
j=1

(
WiYiM

1,j
i

n1
−

(1−Wi)YiM
0,j
i

n0

)
p→ WiYiw1(Xi)− (1−Wi)Yiw0(Xi)

Because the subsets are drawn at random from the full dataset, this implies that
1
r

∑r
i=1 τ̂

(j)∗
i

p→

τ̂ (j)∗ and τ̂∗
p→ τ̂ATE

Simulation data

The simulaধon uses a data-generaধng process (DGP) derived from [4]. We generate 100,000

responses from the following DGP.

Zi = (Zi1, . . . , Zi4) ∼ N (0, I4)
εi ∼ N(0, 1), i = 1, . . . , n

Pr(Wi = 1|Zi) ≡ e(Zi) = 1
1 + exp(Z1 − 0.5Z2 + 0.25Z3 + 0.1Z4)

Yi(0) = 210 + 27.4Z1 + 13.7Z2, +13.7Z3 + 13.7 ∗ Z4 + εi

Yi(1) = Yi(0) + 21(Tr = 1)

Simulation results

To find the true standard error, we generate 1,000 data replicates of the using the correct propen-

sity score specificaধon and calculate τ̂ATE =
∑n

i=1

WiYi

1
π̂(Zi)∑ Wi

π̂(Zi)
− (1−Wi)Yi

1
1−π̂(Zi)∑ 1−Wi

1−π̂(Zi)
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Figure 1. Time elapsed for each algorithm type

Esimate Std. Err. Algorithm

1.98 0.14 Tradiধonal

2.01 0.22 CDF/Full

1.98 0.19 Model/Full

1.98 0.21 Parধধon (Mulধnomial)

1.95 0.19 Parধধon (Sample)

1.90 0.57 CDF/Parধধon

2.08 0.31 Model/Parধধon

Table 1. Esধmates and standard error for each algorithm type
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